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To determine no eigenvectors of a large hermitian matrix, an initial transformation is made 
which uncouples an no x no block. This transformation is determined by an [(n - no) x 
nA]-dimensional partitioning matrix f,  whose determination is the main computational 
problem. The eigenvalues of the nd-dimensional reduced problem are the required exact 
eigenvalues of the original matrix, and the eigenvectors give no exact components of the 
required eigenvectors of the original matrix. The remaining components are obtained 
by simple matrix multiplication. Two classes of algorithms are discussed for determining L 
both suitable for large matrices. One of these can be regarded as giving generalizations 
of Nesbet’s method for the lowest eigenvalue. When fis known only approximately, then, 
provided the aA-dimensional matrices are calculated in an appropriate way, the no eigen- 
values are upper bounds to the no lowest exact eigenvalues, while a first-order error infgives 
a second-order error in the eigenvalues. A generalized variance arises naturally, which 
bounds the variances of the individual eigenvectors, and so defines error limits. 

1. INTRODUCTION 

A number of iterative techniques have been developed recently for the calculation 
of several eigenvectors belonging to the lowest eigenvalues of a large real symmetric 
matrix [l-6]. These techniques have been particularly useful for obtaining electronic 
wavefunctions for the lower-lying energy levels of atoms and molecules in large-scale 
configuration interaction calculations [7]. The matrices arising in such calculations 
typically have diagonal elements arranged in roughly increasing order, with large 
variation in the diagonal elements compared to individual off-diagonal elements. 

In these cases, where the dimensions of the Hamiltonian matrix range from several 
hundred to tens of thousands, the traditional matrix diagonalization techniques are 
not practical. With a matrix so large that it must be stored on some auxiliary device, 
rather than in the central computer memory, only small sections are directly available 
at one time. Techniques which involve many successive modifications of the original 
matrix therefore become very inefficient, besides being vulnerable to significant 
cumulative round-off error. Further, in techniques in which the entire matrix is brought 
to tridiagonal form before calculation of a single eigenvector, the determination of a 
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SEVERAL EIGENVECTORS OF A MATRIX 405 

smaller number of eigenvalues and eigenvectors requires nearly as much work as the 
determination of all of them. 

Iterative techniques, on the other hand, can be formulated in a way which minimizes 
these difficulties. With proper organization, small sections of the matrix can be used 
sequentially, and the work per iteration can be made proportional to)the actual 
number of eigenvectors being calculated. For matrices of large dimension, the work 
per iteration is roughly proportional to the square of the dimension of the original 
matrix, rather than the third power, as in techniques requiring initial tridiagonal- 
ization. 

Most iterative techniques for the partial diagonalization of large matrices now 
available are based on the calculation of successive corrections to an approximate 
starting vector, to obtain a sequence of vectors converging to a single eigenvector. 
Since these techniques typically use the maximization or minimization of the Rayleigh 
quotient, with respect to the approximate eigenvector, as the criterion for the calcu- 
lation of the appropriate corrections [14], the single eigenvector obtained usually 
corresponds to the largest or smallest eigenvalue. To find other eigenvalues and 
eigenvectors, the same calculation is repeated, but convergence onto previously 
calculated eigenvectors is prevented, by using one of several techniques [2]. 

In this paper, the determination of a small number of eigenvectors of a large 
hermitian matrix is approached from a quite different point of view. We use an 
eigenvalue-independent partitioning formalism [9], developed in connection with the 
construction of effective Hamiltonians, to determine an uncoupling operator which 
defines a mapping from a vector subspace S,‘, defined by a desired n,-dimensional 
subset of the eigenvectors, to a subspace S, , of the same dimension, spanned by nA 
basis vectors. The desired eigenvectors and eigenvalues are then obtained by solving 
a matrix eigenvalue problem of the small dimension n, . The main computational 
work is the calculation of the uncoupling operator. This method differs from those 
referred to above in that all the nA eigenvalues and eigenvectors are effectively 
determined simultaneously. This uncoupling procedure can be related to both the 
vanishing of the variance of the matrix with respect to the projection onto the 
subspace spanned by the desired eigenvectors, and also to the extremizing of the sum 
of the Rayleigh quotients of the individual approximate eigenvectors. 

In principle, this uncoupling can be carried out for any grouping of the eigenvectors 
of the matrix, and thus, in principle, any subset of the eigenvectors not actually 
orthogonal to S, can be calculated without previous determination of any of the 
other eigenvectors. In practice, it appears that the calculation of the uncoupling 
operator may converge best when the eigenvectors correspond to the nA lowest 
(or highest) eigenvalues. In most computational situations, it is these eigenvectors and 
eigenvalues of a large matrix which are of interest. 

Section 2 outlines the partitioning formalism on which the approach is based, 
as adapted particularly to matrix eigenvalue problems. A number of properties of 
approximate solutions quoted here will be discussed in a more general and detailed 
analysis of the partitioning method to be given elsewhere [IO]. Section 3 discusses 
computational aspects, and outlines two classes of procedures. Section 4 discusses the 
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generalized eigenvalue problem for a nonorthogonal basis. Section 5 gives some 
computational results. Detailed descriptions of the algorithms are given in an 
Appendix. 

2. THE PARTITIONING FORMALISM 

We consider the eigenvalue problem 

Hxi = &xi , (2-l) 

for an n x n hermitian matrix H, in the form 

X+HX = (1; (2.2a) 

x+x = 1, ) (2.2b) 

where X is the 12 x it unitary matrix whose columns are the orthonormal eigenvectors 
xi of H, and d is the diagonal matrix of the eigenvalues. Let the basis vectors be 
partitioned into two sets, of dimensions nA and &, defining subspaces of the original 
underlying n-dimensional vector space, S, and SB , so that H takes the partitioned 
form 

H= [$: 2s. (2.3) 

Let the eigenvectors xi be likewise partitioned into two sets A and B, of dimensions IZ~ 
and nB , defining eigenspaces S,’ and SB’, the eigenvectors in S,’ being the ones of 
interest. The eigenvector matrix is partitioned columnwise X = (XcA), XCB)) with 
respect to S,’ and SB’, and row-wise with respect to the basis spaces S,., and S, , 
and then takes a block form 

It can be shown, because X is unitary, that it can 

X = T;P, 

where 8 contains only the diagonal blocks of X, 

be factored in the manner 

and where 

I 
x 0 x = 0”” 1 xBB , 

(2.4) 

(2.5) 

(2.6) 

T = [p ;;+I, (2.7) 
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with 

The (Q x n&dimensional matrix f may be called the partitioning, or uncoupling, 
operator. It exists if Xii exists, which is the case as long as no vector in S,’ is ortho- 
gonal to S, , that is, as long as none of the A eigenvectors is orthogonal to all the 
A-basis vectors; and thus f always exists for some partitioning of the basis. 

In view of Eq. (2.5), the eigenvalue equations (2.2) can be rewritten 

Jf++G;E = A, (2.9a) 

where 

and 

X+g8 = 1, ) 

G = T+HT, 

g = T+T. 

(2.9b) 

(2.10) 

(2.11) 

Because of the form (2.7) of T, the metric g is automatically block diagonal, 

g= go” ,“, [ 1 B 
(2.12) 

the diagonal blocks being 

gA = lA +f’f, 

gL3 = li3 +ff+. 

(2.13a) 

(2.13b) 

The diagonal blocks of G are given by 

GA =HAA + Hraf+f+& +f+&f, 

GB =HBB- HsAf+-fH,m +fHAaf+, 

(2.14a) 

(2.14b) 

and the objective of the calculation is to determine f in such a way that the off-diagonal 
blocks vanish. The condition for this is 

where 

D(f) = 0, (2.15) 

D(f) = GBA = HBA i- Hmf-fHAA -fHd (2.15a) 

Equation (2.15) can be regarded as a system of simultaneous nonlinear equations 
for the matrix elements off. When it is satisfied, Eqs. (2.9) yeild two separate eigen- 
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value problems, one of dimension ?I,, for the eigenvalues and eigenvectors of interest, 

‘%$,G,X,, = kA), 

JclAgAXAA = 1A 3 

(2.16a) 

(2.16b) 

and a similar one, of dimension II B , for the remaining eigenvalues. 
The matrices G, and g, in (2.16) may equally well be interpreted either as matrices 

of “effective” operators in the original basis defining S, , or as matrices of the original 
operators H and 1, in a transformed basis spanning S,‘. The language used in the 
following is that appropriate to the first alternative, Eqs. (2.16) being considered as an 
eigenvalue problem in the basis space SA , the two spaces S, and S, having been 
uncoupled. 

Equations (2.16) are equivalent to an eigenvalue problem of the form 

G,,x,ii = LgAxAi, (2.17) 

where xA( is the ith column of X,, , or equivalently to 

l&x,, = XiXAi ) (2.18) 

where fiA is the non-self-adjoint operator 

ii, = g;lGa. (2.19) 

Equations (2.17) or (2.18) can be solved by any standard technique. Assuming that 
the quantities g, and G, or fiA , appearing in (2.17) and (2.18) are calculated from an 
exact f, the eigenvalues Xi are exact eigenvalues of the original matrix H. The eigen- 
vectors XAi give exact components of the corresponding eigenvectors of H, but only nA 
of them, namely, those referring to basis elements in S, . That is, the xAi are the 
exact eigenvectors of H belonging to S,’ projected onto the space S, . Once the 
eigenvectors XAi of GA or fiA have been found, the remaining components of the 
eigenvectors of H are obtained by simple matrix multi&cation 

xi = XBi = fXAi, 

that is, for the whole set, 

(2.2Oa) 

This result follows from Eq. (2.8). Normalization of the eigenvectors of GA or fiA 
according to (2.16b), namely, X>i gAx& = & , corresponds to normalization of the 
complete eigenvectors of H to unity, namely, xi+xj = Sij . The metric g, appears 
because the projected eigenvectors are no longer orthonormal with respect to unity. 
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Thus, if Eqs. (2.15) can be solved for the matrix5 nA eigenvalues and eigenvectors 
of H can be obtained by diagonalizing a matrix of order n,, only. The algorithms 
presented here are concerned primarily with the determination of J 

2.1. Alternative Formulas and Properties of Approximate Solutions 

Two distinct formulas for the matrix E?, of Eq. (2.18), and for fiB , are usefully 
distinguished, namely, 

(2.21a) 

and 

(2.21b) 

The latter are obtained if Eq. (2.1) is taken as the starting point instead of (2.2) 
which leads to HTLf = T&l and to the identity HT = T(.%L’L%-~) = TI?, where B 
is to be block diagonal. The two sets of formulas are equivalent only when f is an 
exact solution of D(f) = 0. For an approximate f, it can be shown that 

Aa”’ = A2’ + g;lf’D(f). (2.22) 

For a given approximate solution f, the approximation to the exact operator J??;, 
given by fi,!,2’ is more accurate than that given by @,‘“. Thus a first-order error in f, 
Sf = fapprox - fexact, leads to respective errors 

SI??’ = HAB Sf 2 (2.23) 

sA!? = gAyA.,t(f+ Sf) - (f+ Sf) A,] + O(Sf”), (2.24) 

where the quantities on the right side of (2.24) are the exact ones. The error in fi,!,’ 
is first order. In the case IZ~ = 1, the commutator-like expression in (2.24) vanishes, 
so that the error in fiL2”’ is of second order. This corresponds to the usual property 
that a first-order error in a trial eigenvector gives only a second-order error in the 
eigenvalue calculated from the Rayleigh quotient. For nA > 1, the first-order 
correction to &A2’ does not vanish, in general, but it can be shown generally [lo] that 
the eigenvalues of fi,Z’ are still correct to second order. Thus if f is known only 
approximately, the eigenvalues and eigenvectors should be determined from Z?-A2’, 
rather than fii”, or, equivalently, from Eq. (2.17). This relative insensitivity of HL2’ 
to errors in f is exploited in the second group of iterative procedures for determining f 
outlined in Section 3. 

It can also be shown [lo], on the basis of a theorem of Hylleraas and Undheim [ 111, 
and MacDonald [12], that the eigenvalues calculated from fiA2) or GA , using an 
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approximate f, are upper bounds to the lowest n,, exact eigenvalues of H, and lower 
bounds to the highest nA eigenvalues. The eigenvalues of I?:) do not have this 
property. 

In terms of fiL”, condition (2.14) onfcan be rewritten 

D”‘(f) = HBA + HBBf - ,ft^rt’ = 0. (2.25) 

Condition 

D’“‘(f) = HBA + Hssf - ffij;“’ = 0 (2.26) 

is clearly equivalent to (2.25), in the sense that both have the same solutions. This 
second equation is obtained directly, instead of (2.25), if T-lHT is required to be in 
block form instead of T+HT. In the present context, but not in the more general one 
in Section 4, it can be shown that P) = gilD1). The two forms (2.25) and (2.26) 
lead to the two types of algorithms given in the next section. 

The magnitude (in a suitable sense) of D(f) is closely related to the exactness of 
the eigenprojection onto S,’ defined by f. The condition that the projection 

p’ = -)+)Jp)t = ga’ .YAlf + 

i 1 fd .kA1f+ 
(2.27) 

be an exact eigenprojection, is that [H, P’] = HP’ - P’H = 0. One scalar measure 
of the deviation of this commutator from zero is the quantity 

a2 = tr([H, P’]“) = tr P’H(1 - P’)H, (2.28) 

which can be regarded as a generalization to a multidimensional case of the variance 
c? = (H2) - (H)2 for a single eigenvector. It can be verified that 

u2 = tr(d2’(f) g,‘D”‘(f>+> (2.29a) 

= // gg1’2D(1)(f) gy2 112, (2.29b) 

where I/ A II denotes the Hilbert-Schmidt norm, (tr A+FI)~/~. Since g, and g, are 
positive definite, u2 vanishes if and only if D(f) vanishes. It can be shown [IO] that u2 
is the sum of the variances, ui2 = (i I H2 1 i) - (i 1 H 1 i)“, for the nA individual 
eigenvectors calculated from GA or PA . f2) Thus u2 = xi ui2 provides an upper bound 
for the variance of any single eigenvector. 

It can also be demonstrated that the gradient of the trace of H over the subspace 
defined by the projection of Eq. (2.27) is given by 

(2.30) 
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and is stationary with respect to all variations off if and only if D(f) = 0. Since the 
trace of H is stationary only when taken over an eigenspace, Eq. (2.30) merely verifies 
that the vanishing of Dcf) is equivalent to an exact uncoupling of S, . From the 
invariance of the trace, it must equal the sum of the Rayleigh quotients of the indi- 
vidual eigenvectors of ir, . (2) Equation (2.30) could be used as the basis for calculaitng 
a given number of the highest or lowest eigenvalues and eigenvectors of H using a 
gradient minimization technique. This possibility is not explored here, however. 

3. DETERMINATION OFT 

The main computational step is the determination of the matrix J Among the 
simplest iterative techniques to apply are those in which Eq. (2.15) is written as a fixed 
point problem 

f = F(f) = J+‘P(f) + .Jdzfl, (3.1) 

where & is some nonsingular, possibly f-dependent, superoperator. Successive sub- 
stitutionsf,,, = F(fJ, starting from an initial guess f. , give the scheme 

fm+1 =fm + Sfm+1, 
(3.2) 

!fm+1 = JJ-lwfm), m = 0, 1, 2,.. ., 

hopefully convergent to a solution of (3.1) and (2.15). If the sequence converges, 
the convergence will be linear, whatever the choice of d [8]. Iterative schemes with 
better than linear convergence properties are impractical because they involve 
manipulation of unacceptably large amounts of data during each iteration. 

When His diagonally dominant, with the diagonal elements of H,, closely grouped 
about a value XAo, the simple choice d = X,,Ol, - Hj$ suggests itself, where Z!Z1p,’ 
is the diagonal part of HBB . This gives an iterative scheme, 

~L3 = (Lo - fLo)-l &(f), (3.3) 

closely related to degenerate perturbation theory. Here, and throughout, Greek 
letters refer to basis elements in S, , and Roman letters refer to basis elements in S, . 
More generally, for diagonally dominant matrices, the simple choice ~9 = 1, 0 
Hjp), - Hj$ @ 1, (direct product notation), leads to the iterative scheme 

Kr = (K, - &7F1 QAf), (3.4) 

also closely related to perturbation theory. 
For more general matrices, however, such iterative schemes may not converge. 

A better approach is to base the choice of d on approximations to the appropriate 
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generalized Newton-Raphson equations, which, if soluble, would give second-order 
convergence. The Newton-Raphson correction to a trial f is calculated from 

J(f) Sf = -D(f), (3.5) 

where J is the Jacobian matrix, consisting of the first derivatives of the elements of 
o(f) with respect to the elements off (a special case of the operator A?’ except for 
sign). Different procedures are suggested by the Newton-Raphson equations for the 
two equivalent conditions, P)(f) = 0, and O(2)(f) = 0. 

3.1. Methods Based on D(l)(f) 

If f. is an approximation to the solution, and Sf the exact correction, so that 
f = f. + Sf is an exact solution of D(l)(f) = 0, then it follows from the definition of 
D(l) that 

fi;‘+(f) 8f - tiffi, = -D”‘(f) 0 0’ 

This is an exact equation for S$ The Newton-Raphson equations, 

(3.6) 

f$jt sf - sf@’ = -D(l), (3.7a) 

differ from (3.6) only in that the exact matrix fiA(f) appearing in (3.6) is replaced 
by the current #j’(f,). That is, the matrix elements of the Jacobian are 

(3.7b) 

The simplicity, and sparseness of J suggests that the second-order convergent Newton- 
Raphson method itself might be attractive. In this connection, it will be seen that if 
Z?L’) in (3.5) is approximated by i?~2’(fo), the resulting system of equations must 
approach third-order convergence, and in fact, from Eq. (2.24), is third-order con- 
vergent when only a single eigenvector is sought (na = 1) [13]. However, the Newton- 
Raphson method requires the solution of the system of nAns simultaneous linear 
equations (3.5) at each iteration. This involves of the order of nA3ng3 operations, 
which is a factor of nA2ng greater than acceptable, even with the improved rate of 
convergence. 

On the other hand, a modified Gauss-Seidel iteration scheme for the solution of 
Eqs. (3.7a) leads to a simple and useful procedure. In this, the off-diagonal elements 
of J are ignored, or, equivalently, & of Eq. (3.1) is taken as the negative of the diagonal 
part of J, so that the corrections are calculated according to 

(3.8) 

The most efficient procedure, in view of the simplicity of the operators involved, 
is to change a single element offat a time, calculating 0:;) at that time, with continual 
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updating of Z?il) and @‘. Where the diagonal elements of HAA are fairly well separated 
from those of HBB , the normal starting approximation is f = 0, in which case the 
starting approximations to &” and &A” are simply HAA and HBB , though any starting 
f can be tried. After changing a single fmr , @,‘) and @$,” are easily updated because 
they are linear in8 

@@?),s = f&o SSns (r = l,..., ??A), (3.9) 

(sI?~‘+) 00 = -Sf H OS SP (p = nA + l,..., n). (3.10) 

Only the diagonal elements SZ?$’ = -iSfugHsO of fij/)+ are in fact required. It is more 
efficient in this scheme to calculate the elements of O(l) fromf and fi!,‘) as needed, 
rather than using an updating procedure, which requires storing O(l). The iterative 
scheme based on Eq. (3.8) will be referred to as “simple diagonal Newton-Raphson” 
(SDNR). A precise statement of computational details is given in the Appendix. 

The idea of the correction Sfo,. , calculated in (3.8), is that it should reduce the 
corresponding 0;:’ approximately to zero. This may be far from the case early in a 
calculation, if S& is large. The exact change Sfeo, required to reduce D$ exactly to 
zero follows from Eq. (3.6), which gives an equation quadratic in Sfor , namely, 

(3.11) 

This equation could be useful instead of (3.8) in difficult cases. Iteration of (3.8) for 
S& , while updating (fi,!,?))71., but keeping (&,l’)OO and DA’+’ fixed, is equivalent, if 
convergent, to solving (3.11). 

3.2. Methods Based on Dt2)(f) 

The operator @,“(j) appearing in D(l)(f) must be considered to have errors of 
the same order as those in f itself. However, for a first-order error inf, the eigenvalues 
of fiL2’(f), appearing in Df2)(f), are correct to second order, and it is reasonable to 
treat &i2’ itself as of higher accuracy thanf, and to neglect the change in fi12’ in the 
Newton-Raphson equations appropriate to Eq. (2.26). Because of the inverse matrix 
gal appearing in fiA , (2) the exact Jacobian is no longer simple. However, on neglecting 
SZ?L2) in comparison to Sf, the approximation 

(3.12) 

is obtained, which gives the simple equations 

HBB 8f- Sf&!"' = -D'"'(f), (3.13) 

for SJ Note, in contrast to Eq. (3.6), that this equation involves the original HBB 
only, and not some modified n, x n, matrix. On the other hand, fiA2’ is more com- 
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plicated to update than i’?$’ in (3.7). The change in &A2 is given exactly, for any 
change Sf, by 

sfiy zzz ga ihew) @ew) _ gAiWd)@d) 

- gA 
_ -i(new) laGA - sg, Ay] (3.14) 

= giltnew) [sf+(D'2' + HBB Sf - Sf@') + w+ Sf - f+ 6f$q, 

where 

W = HBA + HsBf, (3.15) 

and where all quantities in the last line of (3.14) not explicitly indicated as being new 
estimates, are the values before updating. An nA x n, matrix inversion is now 
required for each updating of fiy”’ and, as a result, the procedure is efficient only if 
groups of elements offare changed simultaneously before updating gi2’. In particular, 
it is most efficient in application to large matrices, to change entire n,-dimensional 
rows offat one time. For nB > nA , this leads to an algorithm requiring comparable 
work, per iteration, to algorithm SDNR, that is, or the order of nAnB2 operations per 
iteration. In both approaches, only single columns of the block HBB are required at 
one time. 

Two iterative methods based on Eqs. (3.13) appear useful. The first is the simplest 
diagonal approximation, which corresponds to taking J@’ of (3.1) again as the negative 
of the diagonal part of P2). This leads to the iteration formula 

S& = [(@‘),, - HJ’ D$ (Y = I,..., VA). (3.16) 

When Sf is given by (3.16), expression (3.14) for HA” can be simplified somewhat to 

8@j) = gAlhew) ,ew)t 6 
faA @,@ + wi, 8foA + @f+)A, &A @?2)dl, (3.17) 

where @,2)a is the diagonal part of By’, and where foA and SfOA refer to the 0th row 
off and Sf respectively. 

The second method is to treat the nA equations in (3.13) for each tied u as a matrix 
equation. This corresponds to taking d to be block diagonal, each block being the 
negative of the diagonal block of J f2) of Eq. (3.12) referring to a row of Sf It yields 
the iteration formula 

EjfoA = D~~[H,,lA - .Q.!f’]-‘, (3.18) 

which, in practice, involves the solution of a system of nA simultaneous linear equations 
in ?zA unknowns. In this case, the first term in Eq. (3.14) vanishes, so that the updating 
formula reduces to 

sfi$? = gp(new) [w+ af _ f + sf@j)]. (3.19) 
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This method involves somewhat more computation per sweep through f than the 
preceding one, but may be expected to converge in fewer overall iterations in certain 
cases where the off-diagonal elements of HAA are large. 

In the case nA = 1, both these methods based on OC2)(f) reduce to the algorithm 
of Nesbet [4]. We refer to them here as “diagonal generalized Nesbet” (DGN), and 
“full generalized Nesbet” (FGN), respectively. As discussed in the following section, 
they are easily adapted to the case of a nonorthogonal basis, with only (roughly) a 
doubling of computations per sweep. 

3.3. Minimization of the Trace 

To conclude this section, we observe that the Newton-Raphson equations appro- 
priate to the minimization condition S tr(P’(f)H) = 0, Eq. (2.30), can be written 

(g,%&g$) SfgA' - g,'Sf(g,'GAg;') - D sf+fg,' -fgA'sj+ B = -& (3.20) 

where a,,. = a(tr P’H)/af$ = ( gilD(l)(f) gjl)Or = (IY2) gjl)OT . On multiplying left 
and right by g, and g, , respectively, this becomes 

I@)+ Sf- SfQy = -o(l) + [D’l’g;l sf+f+fsf+ D(2)]. (3.21) 

The last term is of higher order than the others, as the minimum is approached, and 
the remaining equation is of the same type as (3.7a). However, the exact equations 
(3.20) and (3.21) could be significant for gradient minimization techniques. Note, 
however, in the exact equation, that the evaluation of I?A2’ here involves the inversion 
of an nB x n, matrix g, , as well as formation of the product GB g;‘. 

4. NONORTHONORMAL BASIS 

A nonorthonormal basis gives rise to the generalized eigenvalue problem 

Hxi = hiSxi , (4.1) 

where S is the positive definite Gram matrix of the basis elements. Equations (2.2) 
are replaced by 

X+HX = (1, (4.2a) 

x+sx = 1,. (4.2b) 

A partitioning procedure, generalizing that of Section 2, leads to formally the same 
reduced eigenvalue problems as before (Eqs. (2.17)-(2.19)). However, the transfor- 
mation matrix T is now essentially more complicated, 

T= [y :‘d, (4.3) 
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where, as a consequence of Eq. (4.2), 

h = -(SAA + f+sBA)-YsAB + f+SBB), (4.4) 

and also the definitions of the quantities appearing in the reduced eigenvalue equations 
are changed. The metrics, defined by g = T+ST, are given by 

gA = SAA + SABf +f+&, + f’s& 

gB = SBB + SB,h + h+s,, + h+s,,h, 

(4.5a) 

(4.5b) 

while, from G = TtHT, 

GA = HAA + HAB~ + f +HBA + f +H,,f, 

GB = HBB + ffmh + h+HAB + h+H,,h, 

(4.6a) 

(4.6b) 

GB now being changed. I?!.,,“’ is still defined as gjlGA , but now 

f%?) = (SAA i- SdF’ (HAA f H,mf), (4.7a) 

fii’ = (SBB + S,,W (HBB + Hmh), 

I?;‘) and I?A2) still being related by Eq. (2.22). The two equivalent conditions on fare 
now 

o”‘(f) = HBA + Hmf - (&, + &,f) fi?’ = 0, 

o’“‘(f) = HBA + Hid- - (&A + &,f) At’ = 0, 

(4.8a) 

(4.8b) 

with D2) = (SBB $ SBAh) g;‘D”‘. The gradient of the sum of the rzA Rayleigh 
quotients with respect tofis given by D2)g;‘. 

The matrix inversions now required to calculate &L1) and @,” mean that the 
condition W)(j) = 0 is considerably more complicated than before, and a straight- 
forward generalization of the simple diagonal Newton-Raphson scheme of Section 3 
is not useful. Since every element of @A” is changed whenever a single element off is 
changed, it is no longer efficient to scan through Sf, element by element, with constant 
updating. It is preferrable to change nA elements at one time, giving a scheme 
resembling the methods based on D t2). The methods based on D2)(f) generalize 
straightforwardly. The approximate Jacobian becomes 

(4.9) 
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where, as before, changes in fiA2’ are considered to be of higher order and are neglected. 
This Jacobian is no longer sparse, and if the off-diagonal elements of S,, become large, 
the convergence of algorithms in which they are ignored, including those given here, 
may be adversely affected. 

The formula for updating I?:’ is now 

my = gpew)[y+(d2’ + HBB Sf - s,, Sffi~)) + w+ Sf - y+ Sfl?~‘], (4.10) 

where W = HBA + H,,f, as before, and 

Y = s&4 + SmtJ (4.11) 

Because both Wand Y must be calculated, a sweep through Sf requires, for nB > nA , 
approximately twice the computation required in the case of an orthonormal basis 
(S = 1,). 

There are again two plausible ways to calculate S$ As in the method DGN, the 
matrix & of Eq. (3.1) can be chosen to be just the negative of the diagonal of the 
Jacobian, which yields the iteration formula 

(4.12) 

This choice allows the cancellation of parts of the first and third terms in (4.10), 
to give 

Alternatively, & can be chosen block diagonal, with each diagonal block referring 
to a row of Sf, and equal to the negative of the corresponding block of the Jacobian. 
This yields the iteration formula 

@.A = Dl”![&,@’ - H,,l.]-‘, (4.14) 

which again, in practice, involves the solution of a system of nA simultaneous linear 
equations in nA unknowns. The first term of fiA (2) then vanishes completely, leaving 

sfiy zzz gpewq w;, 8faA - Yi, 8fmA A$q (4.15) 

The algorithms based on (4.12)-(4.13) and (4.14)-(4.15) are, respectively, designated 
nonorthogonal diagonal and full generalized Nesbet (DGNS and FGNS). A precise 
statement of these two algorithms is given in the Appendix. 
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5. COMPUTATIONAL RESULTS 

The algorithms described in Section 3 have been applied to matrices of the type 
considered by Nesbet [4], in which the off-diagonal elements are unity, and the 
diagonal elements are the first n odd integers, I, 3, 5,... . Orders up to 250 were 
considered, there being no reason, for testing purposes, to consider larger matrices. 
Permutations of the diagonal elements are equivalent to changes in the basis space SA , 
and usually lead to convergence to different eigenspaces S,‘. The calculations were 
carried out on an IBM 370/168 computer using double-precision arithmetic. The 
criterion of convergence was based on the Hilbert-Schmidt norm, llDIJ = (trD+D)ri3,0f 
the particular form of O(f) used in each method. In practice, a criterion based on the 
maximum change Gf$n the elements off during an iterative sweep, might also beuseful. 

For the basic Nesbet matrix, with S, as the basis space of the lowest (or highest) 
diagonal elements, all methods converge to give the IZ~ lowest (or highest )eigenvalues. 
The number of iterative sweeps varies little with the number of eigenvectors sought, 
and may either increase or decrease with nA . In particular, for the highest eigenvalues, 
or equivalently for the lowest eigenvalues when the off-diagonal elements have changed 
sign, fewer iterations are required for fiA > 1 than for IZ, = I, except for DGN. 
Increasing the order of the matrix generally increases the number of iterations required, 
but only slowly, and generally to roughly the same extent as in Nesbet’s method for 
nA = 1. When S, is not the space corresponding to the smallest (or largest) diagonal 
elements, convergence usually still occurs, but not always. 

For convergent calculations it was found, except for the first few iterations in a few 
cases, that log j/ D 11 is very well approximated as a linear function of the iteration 
number. That is, once the iterative calculation stabilized, convergence was linear in all 
cases, the value of I/ D I/ decreasing on the average for each iteration by some constant 
factor. Table I gives these convergence rates for a number of examples, to illustrate 
the effects of varying the size of the matrix, the ordering of the diagonal elements, 
and the differences between diagonal elements of HA, and H,, . In all examples here 
the basis space S, is defined by the first nA basis functions in order, so that reordering 
of the diagonal elements is equivalent to varying S, . In addition to the convergence 
rates for the three algorithms of Section 3, those for the simple perturbation scheme 
of Eq. (3.4) are also included, and designated SP. Nesbet’s algorithm was used to 
obtain a single eigenvalue of each of these matrices and the convergence rate, as 
measured by u, is tabulated for comparison. 

The first group of calculations shows the effect of change of the size II, and of the 
number of eigenvectors sought, when it is the lowest eigenvectors which are sought. 
The second is for the highest eigenvectors. The third group contains various critical 
reorderings of diagonal elements. Convergence rates are here, on the whole, less 
favorable. Note that the different methods may here converge to different subsets of 
eigenvalues. The fourth group illustrates the suitability of these methods for cases 
in which the first few diagonal elements are nearly the same, and yet well separated 
from the rest. In all but one case, the simple perturbation calculation is inferior to the 
simple diagonal Newton-Raphson algorithm. 
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TABLE I 

Linear” Convergence Rates Of the Algorithms In Selected Calculationsb 

Method” Nesbet 
m n 

@A + %) Diagonal matrix elements in order SDNR SP DGN FGN nA = 1 

1 

1 

1 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

10 

20 

250 

10 

20 

250 

10 

10 

10 

10 

10 

10 

20 

20 

20 

20 

1, 3, 5,..., 17, 19d 

1, 3, 5 ,...) 37, 39 

1, 3, 5 ,...) 497, 499 

1, 3, s,..., 17, 19 

1, 3, 5 )..., 37, 39 

1, 3, 5,..., 497, 499 

19, 17, 15 ,..., 3, 1 

1, 3, 5 )..., 11, 9 )..., 17, 19 

1, 3,..., 11, 9, 7, 13 ,...) 17, 19 

1, 3 ,..., 11, 13, 7, 9 ,..., 17, 19 

1, 3,..., 13, 11, 9, 7 ,...) 17, 19 

19, 17 ,..., 9, ll,..., 3, 1 

I, 1.1, 1.2, 1.3, 1.4, 11, 13 ,..., 37, 39 

1, 1.1, 1.2, 1.3, 1.4, 1.5, 13, 15 ,..., 37, 39 

1, 1.1, 1.2, 1.3, 1.4, 3, 5 ,..., 29, 31 

1, 1.1, 1.2, 1.3, 1.4, 1.5, 3, 5 ,..., 27, 29 

0.24 0.27 0.23 0.23 0.23 

0.31 0.33 0.30 0.30 0.30 

0.51 0.52 0.50 0.50 0.50 

0.22 0.26 0.44 0.19(4) 0.23 

0.29 0.38 0.37 0.29(4) 0.30 

0.51 0.55 0.49 0.50(4) 0.50 

0.23' 0.24' 0.74(3)" 

0.33(5) z 0.40" 

0.55f 0.61f 0.42' 

0.31“ 0.58' 0.42' 

0.31’ 0.57’ 0.438 

IL 0.59' 0.64' 

0.18 0.20 0.21 0.16 
0.20 1 0.98 0.90 

0.41 0.56 0.57 m 

0.45 I I I 

0.24(2)" 0.54 

0.30(2)' 0.23 

0.31(4Y 0.23 

0.999(4)h 0.23 

0.999(4)h 0.23 

0.23' 0.54 

n 

* 

n 

” 

a Least-squares calculation of slope of log I/ D 11 as a function of iteration number. 
* The tabulated numbers represent the average factor by which the norm I/ D Ij is decreased per 

iteration, once a linear convergence rate is established. SA is spanned by the first no basis functions. 
All off-diagonal matrix elements are unity. 

c The number of iterations before linear convergence is established is indicated in brackets to the 
right of the convergence factor, if not zero. 

dThe eigenvalues of this matrix are 0.386, 2.461, 4.519, 6.573, 8.629, 10.691, 12.766, 14.868, 
17.037, 22.072. 

d Converges to the eigenvalues 0.386, 2.461, 4.519, 6.573, 10.691. 
f  Converges to the eigenvalues 0.386, 2.461, 4.519, 8.629, 10.691. 
g Converges to the eigenvalues 0.386, 2.461, 4.519, 10.691, 12.766. 
h Apparently converges to the eigenvalues 0.386, 2.461, 4.519, 10.691, 14.868. 
* Converges to the eigenvalues 10.691, 12.766, 14.868, 17.037, 22.072. 
j Converges to the eigenvalues 8.629, 12.766, 14.868, 17.037, 22.072. 
L 11 D I( is oscillatory. 
Z 11 D jj is apparently divergent. 
m I] D I] becomes constant (=4.34) after 25 iterations. 
n m becomes constant or increases very slowly after about 50 iterations. 
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6. CONCLUSION 

A general partitioning approach for the calculation of a small number of eigenvalues 
and eigenvectors of a large hermitian matrix has been outlined, and three specific 
algorithms have been given within the context of this approach. Two of these are 
readily generalized to calculations employing nonorthogonal basis sets. All three 
require only small sections of the whole matrix at one time and, for all three, the 
number of operations per iteration is proportional to nAnB2, when the number, nA , 
of eigenvectors desired is much smaller than the dimension n = nA + ng of the matrix. 
While it is in no way limited to such cases, the present approach is especially useful 
when the first nA diagonal elements of the matrix are very similar, though well 
separated from the remaining diagonal elements. 

The computational tests indicate that there is little to choose between the rates of 
convergence of the three methods. In cases where convergence is not straightforward 
one method may be more stable, or more rapidly convergent than the others, but 
there is no clear cut superiority of one in all cases. The simple diagonal Newton- 
Raphson procedure, based on P)(f), is somewhat easier to program efficiently for 
~1~ > 1, than the methods based on IP’(f), and from this standpoint it is particularly 
attractive. Tn fact, in most cases, the rates of convergence for this method compare 
very favorably with those for the other, more complex methods. While this method 
yields only the approximation l? (l) directly, a calculation of I?t2) at the end of the 
iterative sequence requires only of the order of the time of one iteration. For nA = 1, 
in the case of an orthonormal basis, SDNR offers an alternative to Nesbet’s method, 
of comparable efficiency. 

APPENDIX 

This appendix gives detailed descriptions of the implementation of the algorithms 
discussed above. In various instances below, especially in the updating cycles, the 
order in which the computations are done is important. Greek indices refer to basis 
elements in S, , Roman indices to basis elements in S, . 

1. Simple Diagonal Newton-Raphson (SDNR) 

Initialization: 

f=O, 

$1) = H 
A AA , 

Q$)diag = p&w!. 
, 
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then 

Update: 

2. Diagonal Generalized Nesbet (DGN) 

Initialization: 

f=O, 

then 

War = Ho, + 2 Hoof,, , 
P=l 1 

Update: 

r=l ,..., nA . 

1 
(s, t = l,..., n,J, 

gA -+ gA + k4 , 

hr -& + Kr (r = l,..., nA), 

4, = fk f Kt v2')t, + VL KS v2'),, + WA? KS 
t=1 

(r, s = l,..., nA), 

3. Full Generalized Nesbet (FGN) 

Initialization: 

f=O, 

0 = I,..., nB. 
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then 
W,, = Ho, + 2 K,f,r 3 

0=1 1 Y = l,..., rz” ) 

D? = W,, - “c” f&8’),, , 
t=1 

solve 

Update: 

A?’ + A?’ + galA, 

fo,-Lw + s&Jr (r = I,..., n,),ei 

4. Nonorthogonal Diagonal Generalized Nesbet (DGNS) 

(J = I,..., ?tB. 

Initialization: 

C, = I,..., HB. 
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5. Nonorthogonal Full Generalized Nesbet (FGNS) 

Initialization: 

then 1 

solve 

Update: 

fi2’ = S-lH 
AA AA 3 

g, = SAA ; 

(r = I,..., HA), 

r = I,..., nA ; 

423 

0 = l,..., ylg . 
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